Tuesday 31 July 2012

Mendel90s at Manchester Mini Maker Faire

There were people asking questions non-stop on Saturday. We didn't even get time to eat or drink all day! Sunday was a little less manic and I managed to take these pictures in a rare quiet moment.

From the left a Dibond Mendel90 with 200mm build height, my acrylic Mendel90, Richards's Emaker Huxley and on the far right his polycarbonate Mendel90 printed by the Huxley: -


Mary points out the differences between Mendel90 and the Sell's Mendel opposite: -


Richard brought a large collection of printed objects which went down well lots of children: -


Most visitors hadn't seen 3D printing in real life before but a reasonable number had heard of it. All the people that inquired were pleasantly surprised how affordable it is.

More pictures of the rest of the faire can be found on Tony's blog.

Friday 27 July 2012

Sanguinololu fan hack

I needed to add a fan drive to my Sanguinololu in a hurry so I did this: -


It is just a 6 pin female connector with three of the pins bent out of the way and a protected logic drive MOSFET soldered across two pins. The fan wires are soldered to the tab of the MOSFET and the 12 V pin.

The connection details can be found here: http://www.thingiverse.com/image:131081. The gate of the MOSFET is pin 1 and it connects to the pin labelled PWM B12. It is actually digital pin 4. The source of the MOSFET, pin 3 connects to ground.

I used a BTS134D but pretty much any protected logic drive MOSFET will work. 

A plain MOSFET needs a series gate resistor to not exceed the maximum output current of the logic pin (and to prevent possible HF oscillation due source pin inductance), a pull down resistor to prevent it floating before the pin is defined as an output (during the bootstrap) and a diode for back EMF protection. That requires a small circuit board as in this Thingiverse thing.

I found that adding the FAN_PIN definition to Marlin corrupted the bed temperature reading unless I commented out #define FAST_PWM_FAN.

Thursday 26 July 2012

Manchester Mini Maker Faire

I will be showing a couple of Mendel90s at the Manchester Mini Maker Faire this weekend, including this taller one made from Dibond.


Richard Gain will be showing his polycarbonate Mendel90 and the RepRapPro Huxley he used to make it.


Friday 22 June 2012

The only way is up

I have always had my machines home away from the bed, with the Z limit switch at the top. Reprap software has always done the opposite, homing towards the bed. As I wanted Mendel90 to work with standard Reprap hardware and software I designed a bottom limit switch with a fine screw adjustment. Playing with it like that for a few days reinforced my opinion that homing upwards is much better.

I have clips in the corners of my bed, and being limited to using the Prusa PCB heater and the smallest bulldog clips I can find means the corners are no go areas. That means there is no homing sequence that guarantees not to crash the head. G28 homes X and Y to a corner and then homes Z, so that is a guaranteed crash. I had to home X first and then move to the middle before homing Y, then move to the middle and home Z. But if Z was already lower than the clips and Y was at one extreme then homing X would crash. So then I raised Z a few mm before homing but that means if Z was at the top it could ram the bar clamp.

After a few days I had crashed the head several times, ripped the tape on my bed and the final straw was homing Z with some crap on the nozzle. That stopped the nozzle reaching the bed so it failed to trigger the endstop. That caused it to pull the nuts out of the X ends and then spin endlessly so the levelling was lost.

I really hate levelling the bed when there are four points (it is easy with three, but without redesigning the PCB, I am stuck with four). So I went back to having a fixed limit switch at the top. It has the following advantages: -

  • Z homes to the top first, so it is always a safe operation no matter what the starting position is and what is on the bed or if there is any plastic stuck to the nozzle.
  • It prevents the Z axis ramming into the top, which is potentially damaging because it can exert quite a lot of force. Driving Z past the bottom is fairly safe because the nut traps are open at the bottom. That means the maximum force it can apply to the nozzle is the weight of the X axis.
  • Z = 0 is defined to be when the nozzle touches the bed (when hot) but it never has to actually go to that position. It is defined by putting the distance from the end stop in the firmware configuration so adjusting it is a matter of tweaking a number rather than a screw adjustment. I set it roughly by nudging to 8mm while rolling an 8mm bar under the nozzle. Then I extrude an outline, cool it and measure its height. I can then correct the number to get the first layer exactly the right height. There is no trial and error, just a simple adjustment procedure.
  • The end stop is much simpler as it no longer needs to be adjustable.
I had to hack Marlin to make it work. If the homing position is towards the top it does Z first instead of last.

I also like my X Y origin to be in the middle of the bed, not one corner. That means the G code doesn't need  to contain the origin offset, everything is sliced to be at 0,0. The comments in configuration.h implied that you could define the origin in the middle but then the soft limits didn't work. I changed the way the axes are defined to be more flexible. Instead of defining just the HOME_POS and the MAX_LENGTH I define the MIN_POS, MAX_POS and HOME_POS. For X and Y they are -100, 100 and - 102 as Mendel90 has exactly 200 mm of travel plus 2mm clearance each end and 2mm to the end stop. So the axis only ever hits the endstop during homing. After that the soft limits prevent it hitting any of the ends. Z cannot be driven lower than 0, so it can just touch the bed worst case.

The code is available on Github. I will remove the bottom endstop from the Mendel90 configuration as I don't see any need for it. Changing a number in the firmware is so much easier than tweaking a screw.

Since reverting to this method I have not had any head crashes or homing mishaps, it just works. I also have ooze free unattended starts with the following G code.

M83 ; use relative distances for extrusion
G28
G1X5Y99F9000 ; Go to the middle of the front
G1Z0.05 ; close to the bed
M104 S200 ; set extruder temp
M190 S55 ; set bed temp & wait
M109 S200 ; wait for extruder temp
G1E5F50 ; extrude a blob
G1X40F4000 ;wipe 40mm along the edge of the bed
G1Z0.3 ;lift Z 

Tuesday 29 May 2012

Bed levelling

This is an excerpt from the Mendel90 build instructions, which are work in progress, but it can be applied to other machines.

The best way I have found to level the bed relative to the nozzle is to use a dial gauge mounted in place of the extruder using this clamp. If you don't have a dial gauge you can roll a rod or slide some film under the nozzle and feel when it is just touching.



The two pillars at the back of the bed have a washer under them to ensure the front can be made both higher or lower than the back. Those pillars are tightened and not adjusted. Front - back adjustment is achieved by adjusting the two pillars at the front. Left - right adjustment is done by turning the Z lead screws. Ideally there would be only one mounting point at the front as only three points are needed to mount a stiff sheet like glass. Having four makes the adjustment more tedious as they tend to bend the sheet and interact with each other.

Start by sliding a washer under the front pillars to set them to the same height as the back. Move the gauge or nozzle to the middle of the back of the bed. Note that level on the gauge, or nudge the Z axis to just touch your feeler. This is the level that we want the whole bed to be at.

Move to the back left corner and adjust the left lead screw to get the same level as the middle. Move to back right and adjust the back right lead screw. Moving the gauge all the way across the back should now read the same height.

Now move to each of the front corners in turn and turn the pillar until the height is correct. Lock them in place by tightening the top screws through the bed.

The whole bed should now be level but usually you need to repeat the procedure a few times due to the interaction of the four points.

Sunday 22 April 2012

Ooze free unattended start

Normally plastic oozes from the nozzle during warm up due to thermal expansion and gravity. It is then necessary to prime the extruder by running it for a few seconds to fill up the now empty barrel. Any oozed or extruded plastic then needs to be removed, typically with tweezers, before the build can start.

This procedure is inconvenient because it means you have to stay with the machine during the warm up sequence rather than simply starting a build and letting it get on with it. I discovered a simple solution which I now use on my Mendel and Mendel90.

I remove any filament hanging from the nozzle while it is cold and then start the machine and leave it. My software moves the nozzle to the front edge of the bed and parks it 0.05mm above the surface. It then warms up the extruder and the bed. As soon as the plastic starts to ooze from the nozzle it meets the relatively cold bed and sets. That seals the nozzle and prevents and more ooze. I leave the small gap to ensure the bed does not take heat away from the nozzle.

When the bed and extruder reach their operating temperatures the software waits for two minutes to allow the nozzle to expand to its full length, otherwise I find the first layer height is inconsistent. The extruder is then run for a couple of seconds to prime it before doing a rapid move 50mm along the edge of the bed to wipe it. It then lifts to 1mm and moves to the start of the build. I always start that with a blob and an outline.

Here is a video of the sequence on my Mendel90:



So now I can start my machines and leave them to do their own thing. I use Python scripts but it should be easy to do the same thing in G code. The technique works with PLA as well as ABS shown above.

Thursday 19 April 2012

ABS Fudge

Many months ago I put some HIPS, ABS and PLA in a jar of limonene. The HIPS dissolved completely fairly quickly and the ABS and PLA were seeming unaffected. I then forgot about it until yesterday.

The PLA is still completely unaffected but the ABS has become soft like fudge.


I assume that given long enough the limonene removes the styrene content from the ABS.

It looks like it is feasible to use HIPS as a support material for PLA and then remove it with limonene. Limonene isn't cheap though and it remains to be seen how much HIPS it can dissolve before it becomes too dilute.

More trifurcated PLA

I repeated the PLA in acetone experiment with red PLA and pure acetone. Same result, trifurcation after a few minutes:


Here is what happens to an object:


These were identical PLA clothes-pegs, one was dipped in acetone for a few minutes.  It fell apart when I tried to pick it out with tongs.

A bit of Googling reveals acetone causes PLA (which is normally amorphous) to become crystalline. That explains why it loses its transparency I think. It also becomes rubbery and crumbly.

Not a very useful result, but it does show that acetone would not be any good for cleaning out a hot end filled with PLA. Also I think people have suggested you could use ABS as support for PLA and dissolve it out with acetone but that plainly will not work either. The opposite works, dissolving the PLA with an alkali.

Sunday 15 April 2012

Peeled PLA

I have read conflicting forum posts as to whether acetone dissolves PLA or not, so I dropped a piece into a jar of acetone for an hour or so. The effect was truly bizarre:


It split into three strands a bit like peeling a banana. It was clear PLA but the acetone was polluted with ABS, which is why it turned white I think. Whereas it is normally transparent and brittle, it has become translucent soft and flexible. When I opened the jar it was under pressure so I think it evolved some gas.

So acetone doesn't dissolve PLA, but it appears to trifurcate it!

Not a very scientific experiment as I should have done it with pure acetone, but interesting never the less.

Friday 6 April 2012

StepStuck

When I built my Mendel I used A3977 stepper drivers. Before that I did some maths to show that the component values need to be carefully selected to match the motor in order to achieve 8× microstepping. Makerbot produced a board with four potentiometers and I published settings for motors popular at the time.

Since then Pololu stepper drivers have become popular (and the StepStick clone), but they only have one thing that you can adjust: the current. They also have 16× microstepping, which makes the range of component values that work even smaller. I was always pretty sure the off-time would be wrong for the motors we use and while commissioning my second Mendel90 I could hear that it was wrong, so I decided to look into it.

When stepping one motor at a constant speed you should hear a single pitch at the step rate. If the off-time is too short then the lowest current microsteps cannot be achieved, the motor pauses twice every 16 microsteps so you hear a lower pitch sound as well.


If you step the motor very slowly (G1X10F1) you can hear a sequence of steps with a pause.


The reason for this is that the lowest current step when ×16 microstepping is 9.8%. If the current is set to 1A then that is only 98mA. The minimum on-time for the chip is fixed at 1μs and my formula predicts the off-time needs to be at least 54μs with 1.65Ω motors. That would require a 47k resistor but the value fitted is only 10K. That gives an off time of 12μs which isn't even long enough for 8× microstepping. The situation is even worse on the Z axis with two motors in parallel.

The problem with increasing the resistor to 47k is that the switching frequency drops to 14kHz, which is audible. So my conclusion is that the A4983 is not really suitable for driving such low resistance motors. The A3977 allows you to control the minimum on-time so you can avoid the switching frequency becoming too low.

Later Pololus and some StepSticks use the A4988 chip. That has an interesting section in the datasheet: -
Low Current Microstepping. Intended for applications where the minimum on-time prevents the output current from regulating to the programmed current level at low current steps. To prevent this, the device can be set to operate in Mixed decay mode on both rising and falling portions of the current waveform. This feature is implemented by shorting the ROSC pin to ground. In this state, the off-time is internally set to 30 μs. 
Conceptually an easy mod to do, simply short out R4, but due to the size and location of the resistor and the age of my eyes it was not at all easy. I applied the mod to a StepStick and it worked, the steps are now regular, no missing beats. Running is a bit quieter but I think the motors are more noisy when stationary. More investigation is needed.

What to do with my A4983 Pololus? Well if I increase the current to 1.3A and change the resistor to 36K then the minimum frequency is 17kHz, which is ultrasonic to me nowadays due to the age of my ears. Alternatively switching to 8× microstepping and using a 22K resistor keeps it above 30kHz and the current can be 1A.

I don't think constant off-time choppers are the best idea. The current range is too limited and the switching frequency varies wildly. As the two halves of the chip run at different frequencies they can generate beat frequencies in the audio band.

The other thing I don't like is that they regulate the peak current so there is an offset of half the ripple current which can make the first step inaccurate.






Tuesday 13 March 2012

Mendel90 files

I have put the Mendel90 files on GitHub. There is the OpenScad source code plus some Python scripts that, given a machine configuration, will generate all the STL files for the printed parts,  DXF files for the sheets, SVG drill templates, a master BOM with a matrix showing where the parts are used and sub-assembly BOMs for each of the sub-assemblies.

Two standard configurations are included: Sturdy90 is the MDF version with 10mm rods that I have had running for three months. Mendel90 is an acrylic version with 8mm rods and the same build area as a Mendel that I have assembled but not run yet. The generated files for these two configurations are also on GitHub.

The directory structure is as follows: -

├───imported_stls       The pulleys and gears that I use but don't have OpenScad source for.
├───mendel                 Generated files for the Mendel90 variant.
│   ├───bom
│   ├───sheets
│   └───stls
├───Prusa_retrofit       A Z motor bracket that allows the Mendel90 x-axis to be fitted to a Prusa.
├───scad                    The OpenScad source.
│   ├───conf               OpenScad configuration files.
│   ├───utils                Utility modules for making objects, such as polyholes.
│   └───vitamins          Models of the non-printed parts.
└───sturdy                  Generated files for the Sturdy90 variant
    ├───bom
    ├───sheets
    └───stls

The top level directory contains the build scripts. To make all the files for a machine run: -
    make_machine.py machine_name

To make just the bom, sheets or stls run bom.py, sheets.py or stls.py machine_name.

machine_name can be mendel or sturdy. To make your own variant copy scad\conf\mendel_config.scad or scad\conf\sturdy_config to yourname_config.scad and edit it. Then run make_machine yourname.

To view the model of the whole machine open scad\main.scad. It will take about 8 miniutes to render but after that you can pan and zoom it at reasonable speed and changes takes less time to render.

To view a sub-assembly open the individual scad files. Set the exploded flag in config.scad to make exploded views.

scad\conf\config.scad contains constants that should be independent of machine variant, for example screw clearance hole sizes. It includes machine.scad that is generated by the build scripts to include the configuration for the specified machine variant.


Thanks to sevikkk (Vsevolod Lobko) for making the scripts work on Linux as well as Windows.


I will put the build instructions in the RepRap wiki soon. These will mainly consist of the exploded views of each of the sub-assemblies with the list of parts in it. Unfortunately OpenScad can't export images from the command line at the moment so they have to be made manually in the GUI.

On my todo list is to add scripts to make images of all the STL files, PDFs from the SVG files using inkscape and produce the BOMs in spread sheet format using OpenOffice. I also need to write a script to tile the SVG files to allow them to be printed on A4 sheets and taped together like the Darwin bed template.

Thursday 16 February 2012

Mendel90 finishing touches

I have tweaked a lot of things since building the prototype. The design is fully parametric meaning each part works out how big it should be from basic parameters like the desired build volume, rod diameter, the motor sizes and the layer height used to print it. That means any little modification can change everything slightly, which is why I won't release the files until it is finished. For example, if I increase a screw hole clearance then the brackets might get a bit bigger and that will knock on to moving the holes in the sheets and may increase the sheet size slightly. I also want the drill templates to be accurate so every part that needs a mounting hole had to be modelled, even the cable clips and wire holes.


The cable clips are designed to keep the limit switch wires away from the motor wires to prevent crosstalk. The hole sizes are calculated from the wire size and the number of wires using circle packing rules and so are the holes through the frame for the wires.

The printed holes that need to be accurate sizes are polyholes if they are vertical, truncated teardrops if they are horizontal. I added on half the layer height to all the horizontal teardrops and nut traps to allow for the staircase effect of the layer sampling.

Another change that had a lot of little knock on effects was to allow thin sheets to be used for the vertical parts of the frame, requiring nuts on the back. That necessitated moving the buttresses and fixing blocks to avoid clashes. The net result is that you can specify the thicknesses of the sheets and whether to use nuts. If using nuts it will calculate the the screw length just long enough to work with a Nyloc nut and generates a clearance hole in the sheet. When not using nuts it calculates a screw short enough to not go right through, generates a pilot hole and adds a star washer under the screw. If the sheet is hard it generates machine screws and a hole to be tapped, otherwise it generates a wood screw.

In order to standardise the screw lengths I made all the parts of the brackets that take a screw the same thickness.

I want the BOM to be accurate and remain that way, so the model includes everything apart from the hot end and the electronics. I haven't used any libraries so there are no dependencies apart from OpenScad itself.


I modelled the belt twists and the tension loop to get an accurate assembly diagram and length on the BOM (hopefully I haven't tested that yet). I also modelled the cable strips to get their lengths. The one to the extruder was tricky as it is completely free-form and the ends differ in X, Y and Z. I modelled it as half an ellipse with a shear transform to gets the ends in the right place. It is probably not mathematically accurate but looks about right. Interestingly there isn't a simple formula for the circumference of an ellipse as there is for a circle, only numerical approximations.

I redesigned my fixing blocks to have slotted holes to allow a bit of adjustment. I also changed the hole depth to allow the same screws to be used as elsewhere and cut away some plastic that wasn't adding much to the strength.



RepRap firmware uses a bottom limit switch that needs a fine adjustment. It also needs a coarse adjustment to allow for different nozzle lengths. I found this difficult to accommodate because of limited space at the bottom of the z-axis. This is the design I arrived at after much deliberation: -



The switch is mounted on a lever that is hinged at the bottom by a thin section of plastic and sprung against a screw adjustment by two rubber washers. An extra type of vitamin but I am not impressed by printed springs.


I developed exploded diagrams to make the build instructions. A picture like this with its bill of materials should be self explanatory.

The z-couplings don't need as much clamping strength as the ones I designed for the Prusa (they only need to rotate the screw and not hold the weight of the x-axis) so I was able the make them slimmer, which was necessary to avoid a clash with the z-motor bracket when using NEMA14 motors on the Huxley sized machine.


As you can see two pictures above I also added some pointers on the lead screws. These can be set to face the rods when Z is homed and can then be used to observe if the two motors have got out of step and whether the z-limit switch is repeatable.

This is what the Mendel size machine with 8mm rods looks like with a 6mm acrylic frame and a 10mm base (without the bed).


Note that to make transparency work in OpenScad you have to draw the transparent objects after all the things you might be able see through them.

The hole cut through the gantry is just big enough to make the Y-carriage. I prefer to make my Y carriages from DiBond as I think they are a bit lighter and handle heat better, but acrylic should be OK and it seems a shame to waste such a big bit. I wouldn't recommend it on the MDF version as that is thicker and so even heavier. I have seen people mount PCB beds directly on MDF but I found that even when spaced off and insulated it warps enough to keep throwing the bed out of level.

I offset the Y-axis to allow the ribbon cable for the bed power to be central. That makes it easier to attach the wires to the PCB. I don't think there is any problem with the belt being nearer to the two bearing side, in fact it is probably better.


I had to slim down the back of the Y-idler bracket to prevent a clash with the bar clamp on the Huxley90. The overly long bolt is simply to reduce the number of unique fasteners. Similarly the cable clips could use smaller screws but I kept them the same as the other base screws. On the Mendel90 the base screws are M4 or No6, on Huxley90 they are M3 or No4.

I used a hacked up D connector shell on the prototype with hexagonal posts for locking. To remove those as vitamins and I designed a printed version that uses normal M3 nuts and screws for the locking. It also has a cable clamp optimised for the ribbon cable and its supporting plastic strip.


Again an exploded view makes it clear how the captive parts fit.


I also crudely modelled the tie-wraps because the 10mm bearings require longer ones to be on the BOM.


Modelling the wing nuts showed that one can clash with the X-end if it is oriented in some directions. Fortunately the bolts are captive hex heads so you can rotate the head and try again if the nut happens to stop where you don't want it. I am currently using M4 extruder mounting screws but I see the Prusa2 has moved to M3. I think that would solve the clash with smaller wing nuts but there are a lot of extruders and hot end designs using M4 I think, so I am not sure if I will follow. In any case it is simply a configuration parameter if you are printing your own.

You can see that I added a small part to the belt tensioner. It works a lot better than the Nyloc I had in the design before.

I also added some more nut traps to make assembly easier. Even a pair of "flying" ones inside the X-motor bracket. You can just see one here:


I have done a lot of changes the make things scale correctly for a Huxley sized version. This uses 6mm rods and NEMA14 motors.




I need to make a smaller extruder though as a Wade's is way too big. I plan to do a mini Wade's with a NEMA11 motor for 1.75mm filament. That will make the carriage smaller and reduce the width of the machine.

I also want to make a parametric PCB heater design to allow arbitrary machine sizes.

So as you can see I have put a lot of work into this since Christmas. In fact nearly all my spare time, until 2am a lot of evenings. I get really ticked off when people demand that I release the files before it is finished. Unlike a lot of people I don't put half baked things on Thingiverse, only tried and tested designs.

As all the parts have changed a little bit I am in the process of printing all the Mendel sized 8mm ones to check them. I will then release the design on GitHub. I had wanted to release it with make files to generate all the STLs automatically but it seems the command line option of OpenScad is currently broken so people will have to make their own if they change any of the parameters.





Saturday 7 January 2012

Bearings, Bushings and Bars

My last post started a discussion about why I got only a few hundred hours of use from PLA bushings and in particular commercial IGUS bushings. I think I mounted the IGUS bushings well enough. I printed PLA holders and reamed them to a 10mm bore, which gave a nice press fit.


I had intended to use a small self tapping screw to retain the flange but found I didn't need them. That is what the two holes are for. They are triangular because they are polyholes.

The holders have slotted screw holes and were screwed to the underside of my Prusa's Dibond Y carriage. I started with them loose and then tightened the screws as I ran the axis up and down to ensure they were aligned well. I then applied lithium grease.

When first fitted they had no slop and very low friction. After a few days of continuous use the holes in the bushings had elongated and there was noticeable slop. At that point I replaced them with LM8UU bearings in prototype bearing holders I designed for the Mendel90.


These have run for thousands of hours with no noticeable wear. They do have more friction than bushings though. It seems higher to start with but they seem to "wear in" quite quickly and it drops.

My suspicion was that the surface quality of the stainless steel rods that I used was to blame, so I have just had a look with a microscope.  I used a cheap USB "Traveller" microscope from Aldi and a times 4 objective lens. The magnification is much greater than that though when photographed and blown up to screen size. 

Here are a couple of pictures of an off-cut from the stainless steel rods I used on my Mendel: -



Obviously you can only have a small strip in focus due to the curvature of the rod but you can see it looks far from smooth. The difference between the pictures is mainly the lighting angle.

Here is a mild steel rod bought on eBay, sold for Reprap use, so probably typical of what most people use: -



Quite a lot smoother, so hopefully most people get better life from PLA bushings than I did.

Here is a bright steel rod from a 2D printer, or maybe a flat bed scanner, I can't remember which, but it will have used bushings: -



It seems to have a finer grain structure but doesn't look particularly smooth.

And here is a "precision round rail (Induction Hardened)" sold for use with linear bearings that I got from Zapp Automation.



It looks the best out the four, so I guess you get what you pay for.

I think for soft bushings to last you need high quality rods. LMUU bearings seem to be more tolerant.