Showing posts with label Darwin. Show all posts
Showing posts with label Darwin. Show all posts

Tuesday, 5 August 2008

X & Y

I have finished building my Darwin Cartesian bot. It went together fairly easily although I did cheat when it came to making the pulleys. The idea is to cast toothed pulleys in PolyMorph using a mould made from RP components and lined with a piece of belt. I had one go at this and decided it was not going to produce an accurate result: -



The RP mould, when made on my machine, is not round enough and for some reason the diameter of the mould is too small, making the resulting pulley very thin walled and flimsy. It produced a 13 tooth pulley but 16 teeth is the correct number for 0.1mm per motor half step and makes a chunkier pulley. I bought three aluminium ones from Farnell for £5.90 each: -



These are ridiculously expensive for what they are but I think it is worth spending a bit of money in an area that increases accuracy. It is also one of the few places where the accuracy of the parent machine affects the accuracy of the child.

The big problem is that they only have a 4mm hole in them so you have to bore out the x-axis one to 1/4" and the two y-axis ones to 8mm. To do that accurately really requires a lathe. As mine is only a tiny watchmaker's lathe I had to use every drill from 4.5mm to 8mm in 0.5mm steps. I found that dipping the drill bits in Trefolex cutting compound made it much easier to drill. This was recommended to me for tapping but it great for drilling as well. It is a sort of jelly, so not too messy.

When you use a twist drill to make a hole it comes out a little small and not perfectly round. It needs to be finished off with a reamer to get a nice fit onto the motor shaft and the 8mm rod. I happened to have a 1/4" reamer but I had to improvise for the 8mm ones with a piece of emery paper wrapped around a 7mm drill shank. Not ideal, so I ordered an 8mm reamer as I expect I will be making lots of 8mm bearing holes in the future.

I also had to drill and tap M3 set screw holes in the pulleys. Easily done with a drill press and it means I don't have to file a long flat on the y-axis drive shaft.

I tested the axes with a signal generator connected to the step input of my stepper motor drivers to find the pull in step rate, i.e. the maximum rate at which the motor will start with no acceleration. Here is the x-axis running at 150mm/s: -


RepRap Darwin x-axis from Nop Head on Vimeo.

Any jerkiness seen is the video, not the axis, which runs very smoothly. The axis does not have the mass of the extruder on it yet but I have run it at the same speed with a reel of solder on top. I expect with a bit of an acceleration ramp, like I use on HydraRaptor, I will be able to get it to go two or three times faster. This is not too surprising because it is a similar design to a 2D printer carriage but with a much more powerful motor. It will be interesting to see what effect it has on stringing if I speed up the head moves from 32mm/s to 150mm/s or more.

I have the motors wired bi-polar parallel, which is the fastest configuration. The inductance is four times less and the voltage halved so I think that is 8 times faster than bi-polar serial. Added to that I am using a 36V supply instead of 12V and FETs rather than Darlingtons. The voltage on the motor will have gone from about 9V to about 36V, so all in all about 32 times faster current rise rate I think. I am using expensive drives but the only aspect I don't know how to do cheaply is anti-resonance, so unless I am stepping through the resonant frequency I should be able to recreate this performance cheaply.

The rated current in this mode is 3.4A per phase but I am only using 1A per phase at the moment so that they don't get too hot. Given that the average supply current from the 36V rail will be correspondingly less than this, it should be fairly easy to generate the 36V supply from 12V to keep to the original goal of using PC power supplies or car batteries.
It would be good to use electronics that can boost the current while accelerating and decelerating.

Here is the y-axis running at 100mm/s: -


RepRap Darwin y-axis from Nop Head on Vimeo.


A few things I have noticed about the design that I would do differently: -

There is a bit of runout on the y-axis motor coupler leading to the shaft wobbling a bit and the motor bracket flexing to accommodate that. I think it would be better to have another bearing at this end of the shaft and a flexible coupling to the motor.

Several of the bearings are made with an RP insert, in my case ABS. I don't know how long these will last. I will have a go at making them from HDPE some time as that should make a better bearing and possibly replace the y-axis ones with 0608 skate bearings.

The rod that carries the Y-axis idler pulleys is held in place by tight fitting "jam" bearing inserts. I can't see the point of these, other than making all the y bearing housings the same. I would replace two of the bearing housings with a smaller part with an 8mm hole through it to carry the rod and possibly a set screw to lock it in place.

The X and Y axis opto tabs enter from the top. The opto has a 0.8mm vertical slit which is the optical aperture. A tab coming in from the side blocks all the slit at once making its resolution several times better than when the tab enters from the top. This graph, taken from the datasheet illustrates the difference: -


The z-axis opto endstop is at the top whereas I prefer to home away from the workpiece so that homing is always a safe operation when z is homed before x and y.
I will leave these tweaks until I have the machine up and running. All I have to do now is make a new extruder, hook my stepper drives to a micro and port my firmware. I will then have a Darwin that I can directly compare with HydraRaptor and see how it differs in performance. I will then look at replacing the electronics with something much cheaper.

Monday, 23 June 2008

Alternative alignment

The Darwin build instructions recommend squaring up the frames by adjusting the corner blocks to get the correct length stubs sticking, out as the excerpt below shows: -

20.JPG

This assumes that the rods are exactly the same length. I think what is actually important is that the gap between the rods is exactly 400mm. To achieve that I made a temporary jig from a couple of diagonal tie brackets and a piece of the 8mm rod and adjusted it so that the outside of the brackets was 400mm. I then used that to space all the rods of the lower frame. I also set the short stubs to 20mm using the first method above. Any variation in rod length then ends up on the the 28mm stub.

Friday, 13 June 2008

Support, who needs it?

I think the original Darwin design assumed it would have a support material extruder, so some of its parts require support material to be made. I.e. they have overhangs that are more than 45°. Vik Olliver and Steve DeGroof subsequently modified the parts requiring support material so that they can be made without it. That allowed Vik to replicate his Darwin without a support extruder. STL files for the modified parts can be found here.

At the time I was making the Y-motor-bracket for my Darwin, the modified file was missing, so I decided to see what would happen if I tried to make the unmodified version. I expected the result to be a mess.

Here is the original file, it has a recess in the bottom to fit the shape of the motor and stud coming out of the side at right angles: -



Here is the modified version to reduce overhangs to 45°: -



The problem with this is that it doesn't fit the motor properly. I think Vik was using a different motor.

To my surprise the original version came out fully functional. It is a bit messy, some of the outline was extruded into mid air and had to be cut off, but the infill managed to build out and recover the correct shape after a couple of layers.





It makes me think we might be able to build out into fresh air simply by going slowly and with a fan to cool the filament.

I built the modified version of the X-motor-bracket, but that has no recess as well so the motor did not fit it. To fix that I made a washer to replace the recess. This was simply a slice off the Y-motor-bracket: -



It is 1.6mm thick, which is four layers with my preferred settings. It seems to do the job. I had to use 20mm bolts rather than 15mm to mount the motor. The pulley is normally mounted 2mm from the end of the shaft so moving to 0.4mm from the end should compensate for the washer.



It should also be possible to use this washer on the other motor brackets. I uploaded it to the wiki page.

Monday, 19 May 2008

Stepping up production

As HydraRaptor seems to be working so well with ABS I decided to put my high temperature extruder design on hold and go for making a set of Darwin parts in ABS. This is how far I got before my extruder wore out again: -



The flexible drive cable disintegrated and most of the JB-Weld has fallen off.

Using Enrique's Skeinforge slicer I can make very sparse objects that are still strong when made in ABS. I set the infill to 25% but I am not sure exactly how Skeinforge interprets it. The infill lines are not parallel so they get further apart the longer they are. Large voids are very sparse indeed and smaller voids look like 25% fill.



The outer wall is always two filaments thick, one is the perimeter and the other is the ends of all the infill zigzags that meet each other. With 0.5mm filament and a layer height of 0.4mm the filament threads are 0.6mm wide so the side walls are 1.2mm thick. I set the number of solid layers to 3 so the top and bottom are also 1.2mm thick. Skeinforge is clever enough to make layers with some areas 100% fill (where they are less than three layers from the top or bottom or internal surface) and other areas sparse. Very clever stuff, which really speeds up the build process but still gives remarkably rigid and strong objects.

I made four of Darwin's eight corner blocks (taking about 2.5 hours each) but I was unhappy with the amount of warping I got when not using a raft. I decided to develop peelable rafts and reusable bed material, like commercial machines have, before making any more parts. That took a lot of experiments to get right but I now have a workable system for ABS.



The bed material is the advertising board I used for ABS before, but this time I am using the back. Unfortunately I don't know what it is. It is very buoyant in water and self extinguishing if I burn it. ABS bonds to it very well. If I extrude the object directly onto it then it is impossible to remove. If I put down a sparse raft first at a low temperature I can remove the raft with a penknife. It blisters the surface but that does not seem to matter because the raft presents a smooth surface to the object. It just gets a bit harder to remove the raft each time as the surface gets more blistered.

The board is not strong enough to resist the warping on its own so I stuck it to the back of some floor laminate with Evostick contact glue. Even that could not hold the edges down, hence the metal strip.

The first raft layer I put down is a 1mm filament zigzag with a 50% spacing, extruded at 4mm/s @ 200°C with a nozzle height of 0.7mm. Because the layer is so thick and extruded quite flat, it absorbs any surface irregularities and makes the initial head height less critical. Spacing it 50% allows it to spread sideways, if the head is too low, and also allows it to be removed. 100% fill is impossible to remove and the head height becomes critical. If it is a little too low, the filament is wider but there is nowhere for it to go, so it builds up on the nozzle and blobs.

The first layer is far too course to build upon so I put two layers of fine zigzag the other way on top. These are 0.5mm filament extruded at 16mm/s with a layer height of 0.4mm and spaced just wide enough to not bond with itself laterally. That makes it easier to remove from the base of the object. The temperature is raised to 230°C to give a strong weld to the layers below.

Two layers are needed because the first layer has a rippled surface as it spans the wide gaps in the layer below. I put them down on top of each other rather than alternating the direction of the zigzag. That makes them weaker laterally therefore easier to remove from the object with a penknife.

The raft uses horizontal and vertical zigzags so there is no correspondence with the object infill which is at 45°. Again that makes it easier to separate without risk of pulling a thread out of the bottom of the object.

To ensure the raft does not bond too well to the object it is cooled for a minute with the fan. The first layer of the object is then extruded at 8mm/s @ 215°C and subsequent layers at 16mm/s @ 230°C. The temperatures are critical, so depending on thermistor site and calibration, they will vary a bit from machine to machine.

This is what the bottom of the raft looks like: -



And this is the top: -



It does slow the build and waste plastic but it reduces warping and makes the bed reusable over and over again. I expect it won't last forever but you can certainly use it many times.

The base of the object is also pretty neat and tidy: -



Here are the stats for the objects I have processed so far: -

Seconds Filament @ 16 mm/s Moves @ 32 mm/s Build time Plastic volume Quantity required Total build time Total plastic
Corner bracket @ 25% 8866 122009 mm 34926 mm 02:27:46 24.0 cc 8 19:42:08 191.7 cc
Opto bracket @ 50% 1200 15902 mm 4661 mm 00:20:00 3.1 cc 3 01:00:00 9.4 cc
Diagonal tie bracket @ 25% 2178 31236 mm 3716 mm 00:34:28 6.1 cc 20 11:29:28 122.7 cc

I will update this table as I progress to make the Darwin parts.

Tuesday, 6 May 2008

Swiss cheese

HydraRaptor made a Darwin corner bracket in 50% filled ABS this evening: -



It took 2 hours 35 minutes. It feels pretty sturdy but there is some delamination through the thin section of the corner facing the camera. A bit of a weak spot in the design I think. Also the base is a bit warped as I didn't use a raft. I don't know if these matter as I haven't worked out what all the holes are for yet. I need to make seven more for a Darwin. I will probably do a 100% version for comparison.