Friday 18 May 2007

How long is your tool?

I decided to make a tool height sensor as a high priority because finding the Z = 0 setting manually is time consuming and risks breaking expensive milling / drill bits. I got my design inspiration from The "One Penny" Touch Probe. I basically turned it upside down. My plan was to have a spring loaded disk pressing upwards against three contacts. Any movement of the disk downwards must break at least one connection. Note that the circuit in the aforementioned article is a little bit more complicated than it needs to be. Rather than use a three input OR gate you can just connect one of the contacts to ground and use a two input OR gate. That also dispenses with a connection to the disk.

Things went well to start with. I milled a ring with three flats on it out of 6mm Perspex. I drilled into the flats and inserted three gold plated pins extracted from a 0.1" header.



I then milled a base which bolts into one corner of the tray on top of my XY table. It has a circular recess to locate the base of the contact ring and a blind hole to house the spring. The corners are all radiused.



The small screw hole in both pieces was drilled manually with a small drill press, the rest was all done by Python script driving HydraRaptor with a 1/8 inch end mill. Here is a video of the ring being made, the flats were added by a third pass :-



The perspex milling went remarkably well at 10 mm per second feed rate, 0.1mm cut. I glued the sheet down onto the sacrificial base (floor laminate) using plasti-kote stencil mount. This worked well but I had to leave it 24 hours to dry because it was pretty much sealed between the two sheets. I removed it from the workpiece afterwards with Stain Slayer tar and grease remover.

The only slight defect was that the parts are slightly undersized for most of their height, but a bit bigger at the bottom. At first I thought that the tool wasn't plunging deep enough into the base material. I tried increasing that with no effect, so the explanation I came up with is that the tool gets a bit clogged with perspex and that rubs against the work piece making it slightly undersized and gives it a polished appearance higher up the edge.

Flushed with success, I thought making a conductive disk would be a doddle but it turned out much harder than I thought. My first idea was to mill a 9.5 mm disk out of PCB material. I stuck that down with stencil mount but I only left it to dry a few hours. It came lose while milling, creating an egg shape.

My second idea was to turn down a cupro-nickel disk on my watchmaker's lathe. I can't say where this disk came from but I can say that it cost exactly 5p. My plan was to hold it by its outside edge in a chuck and plunge a tool into the face to get the correct diameter. After an evening of trying every tool I had and shaking the lathe apart I realised that is not an operation you can do on a lathe. Normally you cut across a face or along the length of the piece. In that case only the leading edge of the tool is actually removing metal. If you try to plunge a tool into the face of the workpiece the whole of the tool width is trying to cut. It just digs in and stalls the lathe. Perhaps a very thin tool might work but I don't have one. The only way to reduce the diameter with the lathe is to turn it from the outside but then there is nothing to hold it by.

My third idea was to turn down a bit of 10mm brass bar and then cut the end off to make a thin disk. This worked at the second attempt, after I had improved my lathe skills a bit. Here are the three rejects :-



And here is the one that worked :-



I made a 5mm stalk on the back to locate the spring :-



And here is the assembled sensor :-



To my amazement when I metered it out there was no connection between the contacts. How could brass pressed against gold not make contact? After close inspection I realised that the disk was resting on small Perspex burrs where I had drilled the holes for the pins. I removed the pins and scraped off the burr with a pen knife and that fixed it.

Tomorrow I will wire it up and see how it performs. The only thing that worries me is that the brass might tarnish with time. At least it will fail safe if it does. I have a small gold watch case that I can cut a disk from if need be.

Sunday 13 May 2007

Dust bustin'

I decided to tackle dust extraction as my first attempt at milling plastic made a right mess as you can see below in the video. The problem with taking a very fine cut is that you get very fine chips. These defy gravity and even stick to the underside of the things, presumably due to static.

My first idea was to enclose the tool in a pipe which reaches down to just above the workpiece. A vacuum feed then needs to come in from the side. I bought a small vacuum cleaner for the bargain price of £17.42.



It seems a bit ridiculous to use 1300W to remove dust from a machine that takes less than 5W to make it but I can't think of a better solution. I might be able to reduce the power with a motor controller if I find I have suction to spare. If not I can always put the air conditioning on to waste even more power.

I tried using a reducer and a small diameter pipe but the reduction in suction was too great so I decided to keep the full bore right to the workpiece.



I started with a small waste pipe T-junction and cut most of it away to leave the shape I wanted.



I then used HydraRaptor to mill a ring to reduce the top pipe diameter to the size of the drill shaft. This will also be the means of attaching it to the underside of the bottom motor mount. I practiced first on a piece of scrap 2.5mm polystyrene before making the final piece in 5mm ABS. You can see that it was a good idea to practise on the scrap first as I made two really stupid mistakes. The first one was to cut the outer circle first! The second one was to offset by just over the diameter of the ring to do a second one. I forgot to add the diameter of the tool! The ring on the right is the finished article. I was able to increase the feed rate to 20mm / second, sticking with the 0.1mm cut depth.



Here is the finished article :-



This is a bit of a landmark as it is the first useful item that HydraRaptor has made. Not very RepRap as it is a subtractive rather than additive process, but it is a part of itself.

While HydraRaptor was making the ring I held the vacuum cleaner nozzle close to the work piece. It was very effective at removing the dust even though there was only a very poor seal. It has the advantage that it does not need to move with the z-axis. It only needs to be suspended in a fixed position just above the work piece. I decide to abandon the piece I had just made and go for a bracket that can hold the nozzle at a fixed but adjustable height. I made this contraption out of a bracket that was formally used to hang a microwave oven on a wall.



This method works well for plastic but I may have to revert back to plan A when milling copper as the chips are a lot heavier.

BTW, I came across a much better plastic identification flow chart, than I mentioned last time, in the RepRap forums: www.texloc.com/ztextonly/clplasticid.htm.

The next thing I intend to tackle is a tool height sensor as it is a pain getting Z = 0 to be exactly where the tool meets the sacrificial base material each time a tool is changed.

Tuesday 8 May 2007

Successful milling

The new metalwork did the trick. It completely solved the snatching problem I had previously. I managed to mill this test shape out of 2.5mm polystyrene, at least that is what I thought it was. I found a site: www.tempatron.co.uk/weld_rods.htm which describes how to identify plastic by setting fire to it and the closest match is ABS, so it may in fact be ABS.


As you can see it has nice clean edges and it measures 34.07mm by 60.02mm by my cheap electronic calipers so is pretty accurate.

Getting the feed rate and cut depth right took a few attempts. The problem was that the plastic kept melting as you can see here :-



I found that with a cut depth of 0.5mm I could only feed at about 0.2mm per second to prevent melting. Reducing the cut depth to 0.1mm allowed me to increase the feed to 10mm per second which is ten times more productive. I probably could have pushed it further but I am not particularly interested in making anything from this material. Here is a video of the test :-



I now have a small but highly accurate CNC milling machine. A few improvements are definitely needed :-
  1. Dust extraction!
  2. Tool height detector
  3. Spindle motor control and stall detect