The latest RepRap heater design consists of insulated nichrome wire wound around a threaded barrel and then stuck down with a coating of J-B Weld high temperature epoxy. I think that is a good way to do it but the insulated nichrome is expensive and I happen to have some nichrome from a heating element. It came from an old hair dryer I think.
Luckily it seems to be the right gauge to give me a reasonable number of turns. The spec was for 8 ohms which gives a maximum wattage of 18W at 12V. That gave me a length of about 340 mm which made 17 turns. I attached some tinned copper tails to make the connections easier to handle. I tied them to the nichrome and then soldered it. On reflection that was probably a bad idea as the solder does not stick to nichrome so if it oxidizes it may go open circuit. Small crimps would be a better I think.
I started by laying down a layer of J-B Weld to insulate the barrel.
After letting this dry for 24 hours I put it in the lathe and turned it down to as thin a layer as I could get before it started flaking off. That was at about 0.2mm.
I added some more J-B Weld to repair the gaps and also used it to attach one end of the nichrome.
After another 24 hours I put it back in the lathe to make the winding.
Finally I added another thick layer of J-B Weld and left it another 24 hours to set. A very slow way of doing it compared to using insulated nichrome and a single coat of J-B Weld.
I tested it by putting a thermocouple probe down the barrel and running it from a variable bench power supply. I heated it up to 200 °C at which point it smoked a bit and the J-B Weld started to discolour. I dropped it back down to 160 °C which only required about 5W of power and pushed some HDPE filament down it. Pressing as hard as I could I got it to extrude some 0.75mm diameter filament though the 0.5mm hole in the nozzle. You can just see a little bit poking out in the picture of the finished article below :-
I don't know how long it will last, the J-B Weld may crack as there is nowhere for the nichrome to expand to. Insulated nichrome would be better in this respect.
There should also be a glass bead thermistor attached to the nozzle to monitor the temperature so that it can be regulated in software. Having seen the resistance of copper stepper motor coils increase noticeably when they get hot, and tungsten light bulb filaments change resistance by a factor of ten, I thought I should try using the resistance of the heater to measure its temperature. The resistance didn't seem to change much so I looked up the temperature coefficient and found it was much lower than other metals, so that is a non starter. I have ordered a couple of thermistors but they are out of stock at the moment so I will have to run it open loop to start with.
The next thing to do is put the pump back together and see if it can extrude.
Tuesday, 31 July 2007
Wednesday, 25 July 2007
Well sprung
Some versions of the RepRap FDM extruder use four springs to press the filament against the threaded rod. The latest version uses compressed plastic piping but I read somewhere that it loses its tension over time. When I was dismantling the CD player out of my Jukebox the other day I came across five reasonably powerful springs :-
Unfortunately the two at the back are not as strong as the front three. However, Forrest Higgs has shown with his Tommelise machine that you can get away with just two springs at the top so I will put the weaker ones at the bottom.
Another problem is that the springs are too big in diameter so I made some stepped washers out of Perspex to fit in the ends. As eight were needed this was the biggest run of things I have milled so far. It was a good way of using up all the scraps of Perspex left in between things I have milled previously. The only problem was that a few disappeared up the vacuum cleaner and had to be retrieved from the bag!
I was worried about the friction in my extruder channel so I tried polishing it with metal polish. This worked very well and greatly reduced the friction. A friend just happened to give me a spray can of PTFE dry film spray today so I gave it some of that as well.
I put the pump together minus the barrel and checked that it can move HDPE filament. It remains to be seen if it can extrude it.
Unfortunately the two at the back are not as strong as the front three. However, Forrest Higgs has shown with his Tommelise machine that you can get away with just two springs at the top so I will put the weaker ones at the bottom.
Another problem is that the springs are too big in diameter so I made some stepped washers out of Perspex to fit in the ends. As eight were needed this was the biggest run of things I have milled so far. It was a good way of using up all the scraps of Perspex left in between things I have milled previously. The only problem was that a few disappeared up the vacuum cleaner and had to be retrieved from the bag!
I was worried about the friction in my extruder channel so I tried polishing it with metal polish. This worked very well and greatly reduced the friction. A friend just happened to give me a spray can of PTFE dry film spray today so I gave it some of that as well.
I put the pump together minus the barrel and checked that it can move HDPE filament. It remains to be seen if it can extrude it.
Monday, 23 July 2007
Boring
Well turning, boring and tapping to be precise. I made the extruder nozzle and PTFE heat barrier this evening :-
I am making a mixture of an older RepRap design and the latest, mainly because I bought the parts before the design was changed. I made a small modification to the nozzle design. You are supposed to use a bottoming tap to thread the inside of the PTFE tube. As I don't have one of those, I drilled the hole 5mm deeper to accommodate the tapered end of the tap. I also turned the last 5mm of the nozzle down instead of threading it. I should have made the PTFE tube 5mm longer but I forgot so I have slightly less heat barrier.
I am not totally happy with the nozzle because I bent it while I was threading it with a die. I don't think it will affect the operation it just looks a bit scrappy. Here they are screwed together and inserted into the clamp :-
I need to add the heating element next.
I am making a mixture of an older RepRap design and the latest, mainly because I bought the parts before the design was changed. I made a small modification to the nozzle design. You are supposed to use a bottoming tap to thread the inside of the PTFE tube. As I don't have one of those, I drilled the hole 5mm deeper to accommodate the tapered end of the tap. I also turned the last 5mm of the nozzle down instead of threading it. I should have made the PTFE tube 5mm longer but I forgot so I have slightly less heat barrier.
I am not totally happy with the nozzle because I bent it while I was threading it with a die. I don't think it will affect the operation it just looks a bit scrappy. Here they are screwed together and inserted into the clamp :-
I need to add the heating element next.
Subscribe to:
Posts (Atom)