OpenScad
I also updated to the latest version of OpenScad. The upside was that hull and some of the 2D operations are much faster. I was also able to replace all the calls to minkowski with offset as I was only using it for 2D offsetting. The net result is it is now four or five times quicker to generate the preview and the STL files. The downside is that the 2D sub-system now uses fixed point coordinates but the rest of OpenScad doesn't. This makes it difficult to get 2D and 3D geometry to match up. For example, an extruded circle now has slightly different vertices to a cylinder of the same size. This created a few degenerate triangles requiring that I changed the way I constructed some objects in order to get nice clean STL files.The solution in the case above was to make the cylinder slightly bigger than the circle used to make the pointer.
On the up side it seems OpenScad has got better at handling unioning exactly coincident faces since I first wrote Mendel90, so I could remove some of my small offset bodges to avoid z-fighting.
Another benefit is that the X end brackets now slice correctly in Slic3r, as the bug that caused internal faces to point the wrong way has now been fixed. Skeinforge doesn't care about face orientation, it just counts edges to work out what is inside and what is outside. Other slicers got confused and filled in the nut cavity.
Along the way I discovered that, although OpenScad now has trig functions that are accurate for multiples of 90 degrees, etc., it doesn't use them in rotate, or vertex creation for circles and cylinders. It converts to radians and uses the library trig functions. Degrees can never be represented accurately as radians in floating point because Pi is irrational, not to mention transcendental. To get round this I now override the built in rotate with a user space version that uses the accurate sin and cos degree functions.
module rotate(a) { cx = cos(a[0]); cy = cos(a[1]); cz = cos(a[2]); sx = sin(a[0]); sy = sin(a[1]); sz = sin(a[2]); multmatrix([ [ cy * cz, cz * sx * sy - cx * sz, cx * cz * sy + sx * sz, 0], [ cy * sz, cx * cz + sx * sy * sz,-cz * sx + cx * sy * sz, 0], [-sy, cy * sx, cx * cy, 0], [ 0, 0, 0, 1] ]) children(); }
Not surprisingly every STL and DXF file generated is now slightly different numerically but hopefully not dimensionally. I made a stable branch to record the state before these global changes, just in case. GitHub has some excellent image and STL comparison views but unfortunately it gives up if more than a handful of files have changed and there are hundreds in the Mendel90 tree.
Wade's Block
After a few people started to report broken or cracked Wade's blocks I strengthened it a bit around the bearing block. I also made the bearing sockets a bit bigger so there is less stress created pressing them in. Kits from around March 2015 have shipped with this version.X Carriage
WhenE3D Hotend
I temporarily parkedThe fan duct has to slope downwards to avoid the E3D heatsink. That creates a sloping bridge that is also skewed horizontally. I haven't found a slicer that handles this properly yet, having tried Skeinforge, Slic3r, Cura, Kisslicer and even paid for Simplify3D! I have blogged about their failings in another post here: hydraraptor.blogspot.co.uk/2016/01/a-bridge-too-far. Any other slicers I should try?
To this: -
It probably doesn't make a lot of difference but a comparative test of various fans and ducts will be the subject of a later post.
Even with the shortened Wade's block the E3D V6 hot end is 4mm lower and the V5 is a bit longer still. If you retro fit it to an old machine you will lose 4mm Z travel. If you are building a new machine then there are alternative files which add 4mm to the height of the frame and lengthen the Z smooth rods and threaded rods on the bom. That also has a knock on effect on the shape of the spool holders and the dust filter. If you use the larger sheets be sure to get the correct size rods and use the correct spool holder parts to match the frame.
New Lighting Options
I redesigned the lighting system I described here to work with some commonly available LED light strips. These consist of an aluminium PCB strip that slides into an aluminium extrusion with plastic end caps, which I discard. Instead of printing a bar to hang the lights and camera from I now add printed end caps to the light strip and uses those to hinge it from the frame edge clips. I then hang the camera from the strip with its own hinge.The strips come in 500mm lengths but they can be cut at discrete points between every third LED. They are described as "50CM 5050 SMD 36 LED Warm White Aluminium Rigid Strip Bar Light Lamp" and I bought them from bgood2010 on eBay.
I got some from another seller and although the eBay picture looked the same the extrusions where actually not as deep. The STL files on GitHub are for 8.6mm deep extrusions and are generated by light_strip = RIGID5050_290. Setting it to Rigid5050_290 generates the clips for 7mm deep extrusion. Other sizes can easily be accommodated as long as they are rectangular. The definitions are here.
Rather than waste the off-cut I mount it above with a second pair of end caps that clip onto the main light strip. These are set back just far enough to avoid the build volume in the unlikely event you print something tall at the back edge of the bed. This is calculated by the model with lots of trig and Pythagoras maths. Set show_rays = true to see this view showing that the camera and lights are pointing at the centre of the bed and the build volume is clear.
Another light strip that can be selected is this one: FSRP3W, discovered by Alzibiff.
Again the end caps are removed and replaced with printed ones that clip into the screw channels in the extrusion. There is no room for the plug so I just solder the wires on.
It looks neater and gives a more diffuse light but is not as bright as the double strip of 5050 LEDs and is more expensive. I bought it from www.ledlightingandlights.com.
The only problem with these light strips compared to my original Sanken ones is that they are unregulated, so they flicker when the bed switches on and off. I described how I fixed that here. I also need to update the mounting for the Raspberry Pi to accommodate the plethora of new Pis that have appeared since my original design.
Half a truncated teardrop with a crutch!
The heated bed was made with veroboard and coincidentally has the same resistance as a full sized Prusa PCB, so the machine takes the same amount of power but heats up about twice as fast. There is no room on the frame for an ATX PSU, so I used an external XBOX 200W PSU. I couldn't find a spec for the 5V standby rail but it seems to supply enough current to power a Raspberry Pi.
Laszlo Krekacs' Indigogo campaign. Unfortunately I don't think the small diameter version is available now. I could probably make one from a hobbed bolt if I needed to or hob one from scratch.