Sunday, 25 December 2011

Mendel90

I never understood why Mendel has a triangular prism frame. The way I see it, the frame only has two functions: - To hold the Y bars in a flat plane and to support the tops of the Z bars. It isn't good at doing either:

  • The main forces on the Z bars are in the direction of the X-axis and the frame has no strength in that direction. It wobbles when the X-carriage changes direction. 
  • It also doesn't ensure the Y bars are in a flat plane because there is nothing to ensure one end triangle is not rotated slightly relative to the other. 

After a trip down a cobbled street in Sheffield my Mendel behaves as if one corner of the bed is lower than the other three. This is impossible because it has a flat sheet of glass on it, but it isn't obvious what needs to be adjusted to fix it but it must be the ends of the Y -bars. The bed needs to be level to within about 0.05mm for good results printing 0.3mm layers without a raft. That is difficult to achieve when the Y axis is strung from bars at opposite sides of the machine.

Other problems are: -

  • It gets smaller at the top, so the maximum Z travel is limited by the extruder colliding with the bars. 
  • The sizes of the Z axis and the Y axis are tied together, so you can't change one without the other. 
  • It is difficult to adjust the axes so that they are orthogonal to each other and keep them that way if the machine is moved.

This machine is my attempt answer to these problems. I am calling it Mendel90 as I can't think of a better name at the moment. The 90 is to emphasise that the frame is based on right angles rather than 60 degree triangles.


Two flat sheets are mounted at right angles to form the XY and XZ planes. Two buttresses maintain them at right angles to each other. This relies on the sheets being cut at perfect right angles but in the UK you can buy sheet materials such as MDF or acrylic cut to size and they have good right angles. The only cutting I had to do was to cut the arch out with a jig saw. It doesn't need to be accurate and it could be done with a hand saw. The piece removed could be used to make the Y carriage, depending on the material.

The buttresses are bigger than they need to be. I took them all the way back to give me plenty of room  to mount my non-standard electronics, but it also has the advantage that the machine will sit on five of the six faces, making it easy to work on.


If the anti-backlash springs are fitted to the Z-axis it should print in all those orientations as well, which would be interesting to try. When printing directly on glass, parts come loose when the bed cools. If the machine was on its back they would fall out the bottom. Who needs an ABP? It might also solve the PLA ooze during warm up problem.


The gantry could be unscrewed and laid on its back over the top of the Y axis to make the machine more compact for travelling. In this case the buttresses could be slimmer to allow it to become even more compact.

I used B&Q style fixing blocks to fasten the sheets together.


I bought some of these and I printed some. They are a lot faster to print than Mendel frame vertexes! The economics are interesting: they are cheaper to print than buy, but while my machines are fully occupied making parts to sell, it is more economical for me to buy them. The printed ones are actually more accurate than the injection moulded ones! The holes are all over the place. I think they must be formed by removable cores and the tool must be worn allowing them to move.

I drilled pilot holes using a paper template. I did this by exporting DXF files of the sheets from OpenScad. I then hacked together a Python DXF reader and an SVG writer to make a program that generated drill centres. I printed them on a large plotter but it could be done with A4 sheets tiled together like the Darwin bed template.

The design is modelled in Openscad, down to the nut and bolt level, and is fully parametric so you can make any size machine and scale the rod diameters and motor sizes if necessary. The only limits are that eventually belts would need to be replaced by rack and pinion above a certain length. It also automatically generates a complete bill of materials for anything in the model.



See also: mendel90-extrudermendel90-axes and mendel90-finishing-touches.


Merry Christmas!



Sunday, 26 June 2011

Half belt hack

I found that I didn't have enough belt to complete the x-axis of my Prusa, but I did have a couple of offcuts about half the required length. Since less than half the belt actually passes over the motor pulley I simply joined them in the middle. My first idea was to print a two part clamp. Another idea was to use heat shrink sleeving, but in the end I simply tied them with some wire.


I joined them back to back so that the teeth mesh, keying them together. This has the beneficial side effect that the smooth part of the belt goes round the smooth idler pulley.


It might actually be worth doing this to get smoother running, even if you do have a belt long enough. Also if you are on a tight budget the second half does not need to be toothed belt at all. It could be packaging strapping or steel wire, etc.

Saturday, 25 June 2011

Yet another Prusa Z-coupling

I finally got around to building the Holiday Prusa Mendel I printed over Christmas. I had a few problems with some of the comedy parts and had to revert to using some of the more up to date ones that I sell.

I didn't find the Z couplings worked very well. The requirements are to couple the M8 threaded rod to the 5mm motor shaft exactly coaxially and with no vertical play, but with some angular flexibility to cater for slightly bent threaded rods or any slight angular misalignment.



The rods are not held very coaxially because the clamp is not symmetrical. The alignment depends on how much the two independent clamps are squeezed, which depends on the exact diameter of the shafts relative to the printed diameter of the part.

They are not very flexible either because they have to be strong enough to support half the weight of the X-axis and the extruder. The direction of pull is in the weak direction of the part that tends to de-laminate it, consequently I print them 100% fill to make them strong enough. I would imagine that if there is any wobble in them the constant flexing would eventually fatigue the part and cause it to break.

I looked around at the various attempts to improve these, but I wasn't happy that any satisfied all the requirements above. I did find two sources of inspiration though:

This one by keegi uses a piece of tubing to provide the angular flexibility and it also helps to grip the smooth motor shaft.

This one by Griffin_Nicoll has the strong direction of the part in the right direction, but suffers the same problem as the original because it has two independent clamps. That is easily solved by removing the split in the top section, but then it would be difficult to grip the smooth motor shaft without the clamp halves being exactly parallel, which would depend on the exact shaft and part sizes. It also has no obvious flexibility. Putting the tubing on the motor shaft solves both these problems.

I hacked Griffin's script to make this version: -


I removed the split, changed the holes and the nut traps to fit M3 and changed the motor shaft diameter to 7mm, which is for a 5mm shaft with tubing on it.



Here it is mounted: -


Both halves are identical inside so not matter what the shaft size is they will always centre and align the shafts automatically. The sleeving allows the shaft to flex angularly and also makes a very firm grip on the motor shaft. The part bears weight along its strong direction and is not required to flex at all, so should last forever. Another possible benefit is if the part is made from PLA it is somewhat insulated from the motor shaft by the tubing, so there is less chance it will melt.

I haven't run the axis yet, but it turns very easily manually and there is no wobble at all. I will include these in my kits from now on and I will include the short piece of tubing as it would be annoying to have to buy just 30mm. Note it does require four extra M3x20 bolts, nuts and associated washers.

The files are here on Thingiverse.