Saturday 24 April 2010

ABS on PET tape

I find ABS sticks to Kapton very well to start with, but as it ages, it seems to stick less well. Corners start to lift and eventually builds are ruined. I have tried cleaning it with isopropyl alcohol and with acetone but it makes no difference. Charles Pax has reported that sanding with 220 grit paper makes it stick better. I cannot reproduce this. In fact, I find the opposite effect. It always sticks well when new, and if anything, sanding it makes it worse.

Somebody pointed out a while ago that you can get PET tape that is rated to 250°C. That is not as high as Kapton, but just about adequate for a heated bed when extruding ABS at 240°C.



I bought some and when my Kapton stopped working I decided to give it a try. It seems to work well. The first layer goes down perfectly :-



and the objects stay flat: -



I do the first layer at 240°C with the bed at 120°C and subsequent layers at 220°C with the bed at 110°C. I have made all the parts for an extruder on it so far and it has performed perfectly. The extruder will be on eBay this evening.



It is too early to say if it better than Kapton, but it looks promising.

Tuesday 6 April 2010

Dibond bed

I had been making Mendel parts with my Mendel, using PLA on blue masking tape, as it didn't have a heated bed . When I made a frame vertex on its own it came out completely flat. Larger parts like the z-base brackets warped a little at the corners, but were still acceptable. However, when I made a bed full of parts the warping was much worse. Frame vertexes warped a little and z-base brackets curled up several millimetres and jammed the y-axis, ruining a bed full of parts. I think the reason they warp more is that it takes so long for each layer that the parts are completely cold when the next layer is deposited. The odd thing is that Adrian Bowyer manages to print trays full of parts on blue masking tape without a heated bed. I have added it to the growing list of things that work better in Bath than they do here: AOI and PTFE being another two.

I had some aluminium plate on order but I wanted to knock something up quickly. I figured PLA on blue tape would only need 40-50°C to stop it warping. My bed is made from Dibond, which is 3mm thick and has the following characteristics:
  • Thickness of aluminium layers 0.3mm.
  • Core polyethylene, type LDPE.
  • Surface: lacquering - modified polyester lacquer system.
  • Temperature resistance from -50 ° C to +80 ° C.
  • Aluminium grade premium A1Mg aluminium alloy.
The great thing about it is that it appears to come pretty flat and is strong, light and easy to machine. I wondered if the aluminium layer was thick enough to spread the heat. I didn't think heat would flow though the LDPE very well so I mounted 10 47Ω 50W resistors around the top edge. I have found that for some reason 47Ω are cheaper than the 12Ω ones I used on HydraRaptor's bed. I wired them in pairs in series and then all the pairs in parallel giving 18.8Ω. I connected them to my 48V AC transformer with a small solid state relay. The total power is about 120W. Not as much as I use on my aluminium beds, but plenty of power to get to 50°C quickly. In fact, it warms up faster that my extruder does.



An initial test showed that the middle was about 10°C cooler than the edge. Not a big surprise considering how thin the aluminium is and how far the heat has to travel. When I measured the other side the difference was only about 5°C, so I decided to mount it upside down with the resistors on the bottom and the thermocouple on the top.

It works very well, and the objects stay flat. The first multi-part build I did though failed after the first few layers.



The extruder jammed because the top of the thermal insulator got hot enough to allow the PLA filament to go soft before the entrance. The extruder was finding PLA very hard to push anyway and the maximum speed I could get was about 24mm/s of 0.5mm filament. This is because the thermal transition zone is too long. The extra heat rising from the bed must have pushed it over the edge, literally!

The insulator is a combination of PTFE for slipperiness and PEEK for strength, but I think PEEK conducts too much heat. It doesn't help that my heater is not insulated yet and the Mendel carriage traps any rising heat.

I am quite happy with with Wade's drive mechanism but decided it was time to try another hot end design, coming soon ...

I think that for PLA, Dibond and blue tape / Kapton is a good solution. It won't handle the temperatures for ABS on Kapton though, but it might be good for ABS on PMMA or PC.

Friday 2 April 2010

CU + PLA

Vik Olliver asked for a volunteer with a heated bed to see if we can extrude onto copper clad board. I didn't think it would stick, but gave it a go anyway.

I first tried ABS onto double sided copper clad FR4 taped to a bed at 120°C. The ABS stuck well enough to extrude the first layer of a 20mm square, but when it cooled down it had no adhesion at all.

PLA at 55°C did exactly the same, but PLA at 130°C stuck very well, so well in fact that I can't get it off with my fingers (the blob was where I aborted the print after the first layer).



Maybe ABS would stick in the same way at an even higher temperature, but maybe not as it is less like glue than PLA. The 120°C / 55°C temperatures are what I use for Kapton, which is why I used them as the starting point.
An interesting aside: I had to measure the PCB to work out the z-height. It is only 1.4mm thick, whereas a standard PCB is 1.6mm. You can also see the grains in the FR4 showing through the copper. This means the board I bought in Maplin for home PCB use is actually the same stock material that they use for the first part of a commercial production process, but when they plate thorough the vias they increase the thickness of the copper all over to get the standard 1oz/inch2. I don't know if this is always the case, i.e, that all home made PCBs have less copper than a production one, or whether you can get bare board with 1oz on it already.
Anyway a good result, assuming PLA will resist PCB etchant. Also, it seemed like a potential bed technique. I.e. do the first layer onto hot copper and then cool it to about 50°C for the rest of the object. I tried it with this butterfly: -



It worked perfectly. After the first layer I blew it with a fan to cool it down to 50°C. It took about four layers to get down to that temperature. Since I added the insulation under the bed it takes longer to cool it than it does to heat it.

After it had finished and cooled down to 40°C it was still firmly attached, so I removed it by flexing the PCB.



The base of the object is perfectly flat.



I think for PLA this might be a better technique than Kapton. I can't imagine the PCB wearing out. It could also be self heating with a serpentine track on the other side. I don't know that just taping it down would be strong enough for making large objects. I could solder fastenings on the back if not.

I don't know if there is anything special about copper and PLA, or whether other hot metals and plastic would work . I tried similar things with ABS on AL, but may not have had it hot enough.